

Outline	or Optical Applications
 Introduction Experimental setup and theoretical analysis 	
 Modulation nonlinearity Intra-band I/Q cross-modulation 16QAM Inter-band cross-modulation OOK+OOK Both intra- and inter-band cross-modulation 16QAM+16QAM 	
 Nonlinearity mitigation: pre-compensation Intra-band Inter-band 	2

lands	Scalar / Vector	Format	Signal V ₁ (t)	Gh.	Modulation	Output	Intra-band	Inter-band XM	Distortion	Constellat	
	Vector-	QAM-	$ \begin{array}{l} i(t)cos(\omega_1 t) \\ + Q(t)sin(\omega_1 t) \end{array} $	- le	$m_t(t) = \frac{\pi I(t)}{V_0} v$	$J_{z}(m_{i})[f_{0}(m_{0}) + J_{z}(m_{0})]$	Yese	N/A#	Constellation compression-	12	
ingle- band-				Qr	$m_Q(t) = \frac{\pi Q(t)}{V_n}$	$J_1(m_q)(J_1(m_l) + J_2(m_l))$				14.20	
			PSKe	$V_1 sin[\omega_1 t + \varphi_1(t)]$	PSK10	$m_{1} = \frac{\pi V_{1}}{V_{e}} = const.s^{3}$	$f_1(m_1) sin[\omega_1 t + \varphi_1(t)]^{\beta}$	Nor	N/A@	Nor	ie.
	Scalar- +- Scalar-	OOK-	$V_1(t)sin(\omega, t)$	OOK1+	$m_1(t) = \frac{nV_1(t)}{V_T}$	$f_0(m_{\pm}) f_1(m_1)$,	1	6.00	Eve-diagram	-	
		OOK.	$\in V_{2}(t) \sin(\omega_{2}t)^{\omega}$	OOK:+	$m_{\sharp}(t) = \frac{\pi V_{2}(t)}{V_{2}} \omega$	$J_0(m_1)J_1(m_2)$,	N/A-	Yese	suppression-	X	
	Vector-				ŀ	$m_t(t) = \frac{\pi l(t)}{V_{e}} c$	$J_0(m_2)J_1(m_1)[J_0(m_2)+J_2(m_2)],$	1032	1.000	Constellation compression-	
		QAM-	 I(t)cos(ω₁t) 	0	$m_{\varphi}(t) = \frac{\pi Q(t)}{V_{e}}$	$f_0(m_2)f_1(m_0)[f_0(m_1) + f_2(m_1)],$	Yese	Yes	++ scaling-		
		OOK	$+ V_2(t) sin(\omega_2 t)$	00K2+	$m_{2}(t) = \frac{\pi V_{2}(t)}{V_{p}}$	$[J_0(m_l)]_0(m_q) = 2J_2(m_l)J_2(m_q)]J_1(m_s)$	N/A#	Yes+	Eye-diagram suppression	X	
Two+ band+		Vector-/ Vector-/			die	$m_{li}(t) = \frac{\pi l_1(t)}{V_{\rm m}} \omega$	$\frac{ j_0(m_{12})j_0(m_{02}) - 2j_2(m_{12})j_2(m_{02}) }{\times j_1(m_{12}) j_2(m_{01}) + j_2(m_{01}) },$				
			QAM-	$l_1(t)cos(\omega_1 t)$ + $Q_1(t)sin(\omega_1 t)$	Qirt	$m_{Q_4}(t) = \frac{\pi Q_1(t)}{V_{e_1}} p$	$[f_0(m_{12})f_0(m_{02}) - 2f_2(m_{12})f_2(m_{02})] \neq $ × $f_1(m_{02})[f_2(m_{12}) + f_2(m_{12})]$	MUSH-	Yes	Constellation	3581
			Vector	QAMe	+ $l_1(t)cas(\omega_2 t)$ + $Q_2(t)sin(\omega_2 t)$	by:	$m_{l_2}(t) = \frac{\pi l_2(t)}{V}$	$[J_0(m_{l1})J_0(m_{01}) - 2J_2(m_{l1})J_2(m_{01})] +$			scaling
	Vector-				Q211	$m_{q_2}(t) = \frac{\pi Q_2(t)}{v}$	$[J_0(m_{j1})J_0(m_{01}) - 2J_2(m_{j1})J_2(m_{01})] + \\ \times J_1(m_{01})J_1(m_{01}) - 2J_2(m_{j1})J_2(m_{01})] + \\$	Yes-	Yes+	-	
		PSK	Water to a with	PSK	$m_1 = \frac{\pi V_1}{V} = const.4$	$J_{0}(m_{2}) J_{1}(m_{1}) \sin[\omega_{1}t + \varphi_{1}(t)]^{\mu}$	Novi	Smalle			
			PSK	+ $V_2 sin[\omega_2 t + \varphi_2(t)]$	PSK24	$m_{\pm} = \frac{\pi V_{\pm}}{V_{\pm}} = const.$	$\int_{2} (m_1) \int_{1} (m_2) \sin[\omega_2 t + \varphi_2(t)] \phi$	Nov	Smalle	Now	
0/		M signale suffer from both intra, and inter band XM * intra-band XM * inter-band XM								хм	

Outline	Georgia Tech Center For Optica
Introduction	
Experimental setup and theoretical analy	/sis
Modulation nonlinearity	
 Intra-band I/Q cross-modulation 16QAM 	
 Inter-band cross-modulation OOK+OOK 	
 Both intra- and inter-band cross-modulation 16QAM+16QAM 	
Nonlinearity mitigation: pre-compensation	on
Intra-band	
Inter-band	
	,

